Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Bioorg Chem ; 143: 107061, 2024 Feb.
Article En | MEDLINE | ID: mdl-38154386

Overexpression of transglutaminase 2 (TGase 2; TG2) has been implicated in the progression of renal cell carcinoma (RCC) through the inactivation of p53 by forming a protein complex. Because most p53 in RCC has no mutations, apoptosis can be increased by inhibiting the binding between TG2 and p53 to increase the stability of p53. In the present study, a novel TG2 inhibitor was discovered by investigating the structure of 1H-benzo[d]imidazole-4,7-dione as a simpler chemotype based on the amino-1,4-benzoquinone moiety of streptonigrin, a previously reported inhibitor. Through structure-activity relationship (SAR) studies, compound 8j (MD102) was discovered as a potent TG2 inhibitor with an IC50 value of 0.35 µM, p53 stabilization effect and anticancer effects in the ACHN and Caki-1 RCC cell lines with sulforhodamine B (SRB) GI50 values of 2.15 µM and 1.98 µM, respectively. The binding property of compound 8j (MD102) with TG2 was confirmed to be reversible in a competitive enzyme assay, and the binding interaction was expected to be formed at the ß-sandwich domain, a p53 binding site, in the SPR binding assay with mutant proteins. The mode of binding of compound 8j (MD102) to the ß-sandwich domain of TG2 was analyzed by molecular docking using the crystal structure of the active conformation of human TG2. Compound 8j (MD102) induced a decrease in the downstream signaling of p-AKT and p-mTOR through the stabilization of p53 by TG2 inhibition, resulting in tumor cell apoptosis. In a xenograft animal model using ACHN cancer cells, oral administration and intraperitoneal injection of compound 8j (MD102) showed an inhibitory effect on tumor growth, confirming increased levels of p53 and decreased levels of Ki-67 in tumor tissues through immunohistochemical (IHC) tissue staining. These results indicated that the inhibition of TG2 by compound 8j (MD102) could enhance p53 stabilization, thereby ultimately showing anticancer effects in RCC. Compound 8j (MD102), a novel TG2 inhibitor, can be further applied for the development of an anticancer candidate drug targeting RCC.


Antineoplastic Agents , Carcinoma, Renal Cell , Kidney Neoplasms , Protein Glutamine gamma Glutamyltransferase 2 , Animals , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Imidazoles/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Molecular Docking Simulation , Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors , Transglutaminases/antagonists & inhibitors , Transglutaminases/metabolism , Tumor Suppressor Protein p53/drug effects , Tumor Suppressor Protein p53/metabolism
2.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article En | MEDLINE | ID: mdl-36902226

Enzymatic modification of gliadin peptides by human transglutaminase 2 (TG2) is a key mechanism in the pathogenesis of celiac disease (CD) and represents a potential therapeutic target. Recently, we have identified the small oxidative molecule PX-12 as an effective inhibitor of TG2 in vitro. In this study, we further investigated the effect of PX-12 and the established active-site directed inhibitor ERW1041 on TG2 activity and epithelial transport of gliadin peptides. We analyzed TG2 activity using immobilized TG2, Caco-2 cell lysates, confluent Caco-2 cell monolayers and duodenal biopsies from CD patients. TG2-mediated cross-linking of pepsin-/trypsin-digested gliadin (PTG) and 5BP (5-biotinamidopentylamine) was quantified by colorimetry, fluorometry and confocal microscopy. Cell viability was tested with a resazurin-based fluorometric assay. Epithelial transport of promofluor-conjugated gliadin peptides P31-43 and P56-88 was analyzed by fluorometry and confocal microscopy. PX-12 reduced TG2-mediated cross-linking of PTG and was significantly more effective than ERW1041 (10 µM, 15 ± 3 vs. 48 ± 8%, p < 0.001). In addition, PX-12 inhibited TG2 in cell lysates obtained from Caco-2 cells more than ERW1041 (10 µM; 12 ± 7% vs. 45 ± 19%, p < 0.05). Both substances inhibited TG2 comparably in the intestinal lamina propria of duodenal biopsies (100 µM, 25 ± 13% vs. 22 ± 11%). However, PX-12 did not inhibit TG2 in confluent Caco-2 cells, whereas ERW1041 showed a dose-dependent effect. Similarly, epithelial transport of P56-88 was inhibited by ERW1041, but not by PX-12. Cell viability was not negatively affected by either substance at concentrations up to 100 µM. PX-12 did not reduce TG2 activity or gliadin peptide transport in confluent Caco-2 cells. This could be caused by rapid inactivation or degradation of the substance in the Caco-2 cell culture. Still, our in vitro data underline the potential of the oxidative inhibition of TG2. The fact that the TG2-specific inhibitor ERW1041 reduced the epithelial uptake of P56-88 in Caco-2 cells further strengthens the therapeutic potential of TG2 inhibitors in CD.


Celiac Disease , Protein Glutamine gamma Glutamyltransferase 2 , Humans , Biopsy , Caco-2 Cells , Celiac Disease/drug therapy , Celiac Disease/enzymology , Gliadin/metabolism , Intestinal Mucosa/metabolism , Peptides/metabolism , Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors , Transglutaminases/metabolism , Intestines/enzymology
3.
Exp Eye Res ; 226: 109338, 2023 01.
Article En | MEDLINE | ID: mdl-36470430

Corneal wound healing is integral for resolution of corneal disease or for post-operative healing. However, corneal scarring that may occur secondary to this process can significantly impair vision. Tissue transglutaminase 2 (TGM2) inhibition has shown promising antifibrotic effects and thus holds promise to prevent or treat corneal scarring. The commercially available ocular solution for treatment of ocular manifestations of Cystinosis, Cystaran®, contains the TGM2 inhibitor cysteamine hydrochloride (CH). The purpose of this study is to assess the safety of CH on corneal epithelial and stromal wounds, its effects on corneal wound healing, and its efficacy against corneal scarring following wounding. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) were first used to quantify and localize TGM2 expression in the cornea. Subsequently, (i) the in vitro effects of CH at 0.163, 1.63, and 16.3 mM on corneal epithelial cell migration was assessed with an epithelial cell migration assay, and (ii) the in vivo effects of application of 1.63 mM CH on epithelial and stromal wounds was assessed in a rabbit model with ophthalmic examinations, inflammation scoring, color and fluorescein imaging, optical coherence tomography (OCT), and confocal biomicroscopy. Post-mortem assessment of corneal tissue post-stromal wounding included biomechanical characterization (atomic force microscopy (AFM)), histology (H&E staining), and determining incidence of myofibroblasts (immunostaining against α-SMA) in wounded corneal tissue. TGM2 expression was highest in corneal epithelial cells. Application of the TGM2 inhibitor CH did not affect in vitro epithelial cell migration at the two lower concentrations tested. At 16.3 mM, decreased cell migration was observed. In vivo application of CH at 57 mM was well tolerated and did not adversely affect wound healing. No difference in corneal scarring was found between CH treated and vehicle control eyes. This study shows that the TGM2 inhibitor CH, at the FDA-approved dose, is well tolerated in a rabbit model of corneal wound healing and does not adversely affect epithelial or stromal wound healing. This supports the safe use of this medication in Cystinosis patients with open corneal wounds. CH did not have an effect on corneal scarring in this study, suggesting that Cystaran® administration to patients with corneal wounds is unlikely to decrease corneal fibrosis.


Corneal Injuries , Cysteamine , Cystinosis , Epithelium, Corneal , Animals , Rabbits , Cicatrix/metabolism , Cornea/drug effects , Cornea/metabolism , Corneal Diseases/pathology , Corneal Injuries/drug therapy , Corneal Injuries/metabolism , Cysteamine/pharmacology , Cysteamine/therapeutic use , Cysteamine/metabolism , Cystinosis/metabolism , Cystinosis/pathology , Epithelium, Corneal/pathology , Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors , Wound Healing/drug effects
4.
Int J Mol Sci ; 23(2)2022 Jan 11.
Article En | MEDLINE | ID: mdl-35054938

Midazolam is an anesthetic widely used for anxiolysis and sedation; however, to date, a possible role for midazolam in diabetic kidney disease remains unknown. Here, we investigated the effect of midazolam on hyperglycemia-induced glomerular endothelial dysfunction and elucidated its mechanism of action in kidneys of diabetic mice and human glomerular microvascular endothelial cells (HGECs). We found that, in diabetic mice, subcutaneous midazolam treatment for 6 weeks attenuated hyperglycemia-induced elevation in urine albumin/creatinine ratios. It also ameliorated hyperglycemia-induced adherens junction disruption and subsequent microvascular leakage in glomeruli of diabetic mice. In HGECs, midazolam suppressed high glucose-induced vascular endothelial-cadherin disruption and endothelial cell permeability via inhibition of intracellular Ca2+ elevation and subsequent generation of reactive oxygen species (ROS) and transglutaminase 2 (TGase2) activation. Notably, midazolam also suppressed hyperglycemia-induced ROS generation and TGase2 activation in glomeruli of diabetic mice and markedly improved pathological alterations in glomerular ultrastructure in these animals. Analysis of kidneys from diabetic Tgm2-/- mice further revealed that TGase2 played a critical role in microvascular leakage. Overall, our findings indicate that midazolam ameliorates hyperglycemia-induced glomerular endothelial dysfunction by inhibiting ROS-mediated activation of TGase2.


Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Endothelial Cells/metabolism , Hyperglycemia/complications , Kidney Glomerulus/metabolism , Midazolam/pharmacology , Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors , Animals , Biomarkers , Calcium/metabolism , Capillary Permeability/drug effects , Diabetes Mellitus, Experimental , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Disease Management , Disease Models, Animal , Disease Susceptibility , Endothelial Cells/drug effects , Endothelial Cells/pathology , Kidney Glomerulus/pathology , Kidney Glomerulus/ultrastructure , Male , Mice , Mice, Knockout , Models, Biological , Reactive Oxygen Species/metabolism
5.
Curr Comput Aided Drug Des ; 18(1): 41-51, 2022.
Article En | MEDLINE | ID: mdl-34225635

AIM: This study aimed at screening and development of TG2 inhibitors as anti lung cancer agent. BACKGROUND: Transglutaminase 2 (TG2) is multifunctional and ubiquitously expressed protein from the transglutaminase family. It takes part in various cellular processes and plays an important role in the pathogenesis of autoimmune, neurodegerative diseases, and also cancer. OBJECTIVE: The proposed study focused on screening potent inhibitors of TG2 by in-silico method and synthesize their derivative as well as analyse its activity by utilizing an in-vitro approach. MATERIALS AND METHODS: Molecular docking studies have been carried out on the different classes of TG2 inhibitors against the target protein. Nearly thirty TG2 inhibitors were selected from literature and docking was performed against transglutaminase 2. The computational ADME property screening was also carried out to check their pharmacokinetic properties. The compounds which exhibited positive ADME properties with good interaction while possessing the least binding energy were further validated for their anti-lung cancer inhibition property against A549 cell lines using cytotoxicity studies. RESULTS: The results of the present study indicate that the docked complex formed by cystamine showed better binding affinity towards target protein, so this derivative of cystamine was formed using 2,5 dihydrobenzoic acid. Invitro results revealed that both molecules proved to be good cytotoxic agents against A549 lung cancer (875.10, 553.22 µg/ml), respectively. Further, their activity needs to be validated on TG2 expressing lung cancer. CONCLUSION: Cystamine and its derivative can act as a potential therapeutic target for lung cancer but its activity should be further validated on TG2 expressing lung cancer.


Enzyme Inhibitors , Lung Neoplasms , Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors , A549 Cells , Early Detection of Cancer , Enzyme Inhibitors/pharmacology , Humans , Lung Neoplasms/drug therapy , Molecular Docking Simulation
6.
Am J Physiol Heart Circ Physiol ; 322(2): H167-H180, 2022 02 01.
Article En | MEDLINE | ID: mdl-34890280

Consumption of diets high in fat, sugar, and salt (Western diet, WD) is associated with accelerated arterial stiffening, a major independent risk factor for cardiovascular disease (CVD). Women with obesity are more prone to develop arterial stiffening leading to more frequent and severe CVD compared with men. As tissue transglutaminase (TG2) has been implicated in vascular stiffening, our goal herein was to determine the efficacy of cystamine, a nonspecific TG2 inhibitor, at reducing vascular stiffness in female mice chronically fed a WD. Three experimental groups of female mice were created. One was fed regular chow diet (CD) for 43 wk starting at 4 wk of age. The second was fed a WD for the same 43 wk, whereas a third cohort was fed WD, but also received cystamine (216 mg/kg/day) in the drinking water during the last 8 wk on the diet (WD + C). All vascular stiffness parameters assessed, including aortic pulse wave velocity and the incremental modulus of elasticity of isolated femoral and mesenteric arteries, were significantly increased in WD- versus CD-fed mice, and reduced in WD + C versus WD-fed mice. These changes coincided with respectively augmented and diminished vascular wall collagen and F-actin content, with no associated effect in blood pressure. In cultured human vascular smooth muscle cells, cystamine reduced TG2 activity, F-actin:G-actin ratio, collagen compaction capacity, and cellular stiffness. We conclude that cystamine treatment represents an effective approach to reduce vascular stiffness in female mice in the setting of WD consumption, likely because of its TG2 inhibitory capacity.NEW & NOTEWORTHY This study evaluates the novel role of transglutaminase 2 (TG2) inhibition to directly treat vascular stiffness. Our data demonstrate that cystamine, a nonspecific TG2 inhibitor, improves vascular stiffness induced by a diet rich in fat, fructose, and salt. This research suggests that TG2 inhibition might bear therapeutic potential to reduce the disproportionate burden of cardiovascular disease in females in conditions of chronic overnutrition.


Cystamine/pharmacology , Diet, Western/adverse effects , Enzyme Inhibitors/pharmacology , Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors , Vascular Stiffness/drug effects , Actins/metabolism , Animals , Aorta/metabolism , Aorta/physiology , Cells, Cultured , Collagen/metabolism , Elasticity , Female , Humans , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiology , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , Pulse Wave Analysis
7.
Clin Exp Hypertens ; 44(2): 167-174, 2022 Feb 17.
Article En | MEDLINE | ID: mdl-34889160

To investigate the relationship between transglutaminase type 2 (TG2) and pulmonary vascular remodeling in the formation of pulmonary arterial hypertension (PAH), and to investigate the effect of the inhibitor cystamine dihydrochloride on pulmonary vascular remodeling in rats with PAH.Thirty healthy male Sprague Dawley rats were randomly divided into a control group, a PAH model group, and an intervention group. The mean pulmonary artery pressure (mPAP), the right ventricular hypertrophy index (RVHI), the percentage wall thickness of the pulmonary artery (WT%), and the degree of neointimal proliferation were measured, and the pathological changes in the pulmonary tissues were observed.Messenger ribonucleic acid (mRNA) and protein expressions of TG2, 5-hydroxytryptamine transporter (5-HTT), and Rho-associated protein kinase 2 (ROCK2) in the pulmonary tissues of the three groups of rats were detected.Compared with the control group, the mPAP, RVHI, and WT% were significantly higher in the model group, the degree of neointimal proliferation was significantly increased, and the mRNA and protein expressions of TG2, 5-HTT, and ROCK2 in the pulmonary tissue were significantly increased. Compared with the model group, the mPAP, RVHI, WT%, and the degree of neointimal proliferation were significantly lower in the intervention group, as were the mRNA and protein expressions of TG2, 5-HTT, and ROCK2 in the pulmonary tissue.The TG2 inhibitor cystamine dihydrochloride can prevent the formation of PAH to some extent. This might be due to the inhibition of the TG2 activity, 5-HTT expression, and possibly the inhibition of RhoA/ROCK signaling pathway activation.


Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors , Pulmonary Arterial Hypertension , Vascular Remodeling , Animals , Male , Pulmonary Artery , Rats , Rats, Sprague-Dawley
8.
Cells ; 10(11)2021 10 29.
Article En | MEDLINE | ID: mdl-34831164

Following CNS injury, astrocytes become "reactive" and exhibit pro-regenerative or harmful properties. However, the molecular mechanisms that cause astrocytes to adopt either phenotype are not well understood. Transglutaminase 2 (TG2) plays a key role in regulating the response of astrocytes to insults. Here, we used mice in which TG2 was specifically deleted in astrocytes (Gfap-Cre+/- TG2fl/fl, referred to here as TG2-A-cKO) in a spinal cord contusion injury (SCI) model. Deletion of TG2 from astrocytes resulted in a significant improvement in motor function following SCI. GFAP and NG2 immunoreactivity, as well as number of SOX9 positive cells, were significantly reduced in TG2-A-cKO mice. RNA-seq analysis of spinal cords from TG2-A-cKO and control mice 3 days post-injury identified thirty-seven differentially expressed genes, all of which were increased in TG2-A-cKO mice. Pathway analysis revealed a prevalence for fatty acid metabolism, lipid storage and energy pathways, which play essential roles in neuron-astrocyte metabolic coupling. Excitingly, treatment of wild type mice with the selective TG2 inhibitor VA4 significantly improved functional recovery after SCI, similar to what was observed using the genetic model. These findings indicate the use of TG2 inhibitors as a novel strategy for the treatment of SCI and other CNS injuries.


Astrocytes/enzymology , Gene Deletion , Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors , Recovery of Function/physiology , Spinal Cord Injuries/physiopathology , Animals , Astrocytes/drug effects , Enzyme Inhibitors/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Gliosis/complications , Gliosis/pathology , Mice, Knockout , Protein Glutamine gamma Glutamyltransferase 2/metabolism , Recovery of Function/drug effects , Spinal Cord Injuries/complications , Spinal Cord Injuries/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
9.
J Immunol Res ; 2021: 4754454, 2021.
Article En | MEDLINE | ID: mdl-34485533

BACKGROUND: Propofol is a known intravenous hypnotic drug used for induction and maintenance of sedation and general anesthesia. Emerging studies also reveal a neuroprotective effect of propofol in diverse diseases of neuronal injuries via modulating microglia activation. In this study, we aimed to uncover the downstream targets of propofol in this process. METHODS: RNA sequencing analysis to identify genes implicated in the propofol-mediated neuroprotective effect. Quantitative real-time PCR, enzyme-linked immunosorbent assay, and Western blotting analysis were performed to analyze inflammatory gene expression, cytokine levels, and TGM2. BV2 cells and primary microglia were used for functional verification and mechanism studies. RESULTS: The multifunctional enzyme transglutaminase 2 (TGM2) was identified as a putative functional mediator of propofol. TGM2 was significantly upregulated in lipopolysaccharide- (LPS-) primed BV2 cells. Genetic silencing of TGM2 abolished LPS-induced microglial activation. Notably, gain-of-function experiments showed that the proinflammatory effects of TGM2 were dependent on its GTP binding activity instead of transamidase activity. Then, TGM2 was revealed to activate the NF-κB signaling pathway to facilitate microglial activation. Propofol can inhibit TGM2 expression and NF-κB signaling in BV2 cells and primary microglia. Ectopic expression of TGM2 or constitutively active IKKß (CA-IKKß) can compromise propofol-induced anti-inflammatory effects. CONCLUSIONS: Our findings suggest that TGM2-mediated activation of NF-κB signaling is an important mechanism in the propofol-induced neuroprotective effect that prevents microglial activation.


Microglia/drug effects , Neuroinflammatory Diseases/drug therapy , Propofol/pharmacology , Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors , Animals , Animals, Newborn , Disease Models, Animal , Gene Knockdown Techniques , Guanosine Triphosphate/metabolism , Humans , Lipopolysaccharides/immunology , Mice , Microglia/immunology , Microglia/pathology , NF-kappa B/metabolism , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/pathology , Primary Cell Culture , Propofol/therapeutic use , Protein Glutamine gamma Glutamyltransferase 2/genetics , Protein Glutamine gamma Glutamyltransferase 2/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology
10.
J Vasc Res ; 58(4): 237-251, 2021.
Article En | MEDLINE | ID: mdl-33910208

INTRODUCTION: Pulmonary hypertension is characterized by vasoconstriction and remodeling of pulmonary arteries, leading to right ventricular hypertrophy and failure. We have previously found upregulation of transglutaminase 2 (TG2) in the right ventricle of chronic hypoxic rats. The hypothesis of the present study was that treatment with the transglutaminase inhibitor, cystamine, would inhibit the development of pulmonary arterial remodeling, pulmonary hypertension, and right ventricular hypertrophy. METHODS: Effect of cystamine on transamidase activity was investigated in tissue homogenates. Wistar rats were exposed to chronic hypoxia and treated with vehicle, cystamine (40 mg/kg/day in mini-osmotic pumps), sildenafil (25 mg/kg/day), or the combination for 2 weeks. RESULTS: Cystamine concentration-dependently inhibited TG2 transamidase activity in liver and lung homogenates. In contrast to cystamine, sildenafil reduced right ventricular systolic pressure and hypertrophy and decreased pulmonary vascular resistance and muscularization in chronic hypoxic rats. Fibrosis in the lung tissue decreased in chronic hypoxic rats treated with cystamine. TG2 expression was similar in the right ventricle and lung tissue of drug and vehicle-treated hypoxic rats. DISCUSSION/CONCLUSIONS: Cystamine inhibited TG2 transamidase activity, but cystamine failed to prevent pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial muscularization in the chronic hypoxic rat.


Arterial Pressure/drug effects , Cystamine/pharmacology , Enzyme Inhibitors/pharmacology , Hypertension, Pulmonary/prevention & control , Hypoxia/drug therapy , Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors , Pulmonary Artery/drug effects , Animals , Disease Models, Animal , Female , Hypertension, Pulmonary/enzymology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/enzymology , Hypertrophy, Right Ventricular/etiology , Hypertrophy, Right Ventricular/physiopathology , Hypertrophy, Right Ventricular/prevention & control , Hypoxia/complications , Hypoxia/enzymology , Hypoxia/physiopathology , Male , Mice, Inbred C57BL , Protein Glutamine gamma Glutamyltransferase 2/metabolism , Pulmonary Artery/enzymology , Pulmonary Artery/physiopathology , Pulmonary Fibrosis/enzymology , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/physiopathology , Pulmonary Fibrosis/prevention & control , Rats, Wistar , Vascular Remodeling/drug effects , Ventricular Function, Right/drug effects , Ventricular Remodeling/drug effects
11.
Pharmacol Ther ; 222: 107787, 2021 06.
Article En | MEDLINE | ID: mdl-33307141

Chronic kidney disease (CKD) is a global health problem with a prevalence of 10-15%. Progressive fibrosis of the renal tissue is a main feature of CKD, but current treatment strategies are relatively unspecific and delay, but do not prevent, CKD. Exploration of novel pharmacological targets to inhibit fibrosis development are therefore important. Transglutaminase 2 (TG2) is known to be central for extracellular collagenous matrix formation, but TG2 is a multifunctional enzyme and novel research has broadened our view on its extra- and intracellular actions. TG2 exists in two conformational states with different catalytic properties as determined by substrate availability and local calcium concentrations. The open conformation of TG2 depends on calcium and has transamidase activity, central for protein modification and cross-linking of extracellular protein components, while the closed conformation is a GTPase involved in transmembrane signaling processes. We first describe different methodologies to assess TG2 activity in renal tissue and cell cultures such as biotin cadaverine incorporation. Then we systematically review animal CKD models and preliminary studies in humans (with diabetic, IgA- and chronic allograft nephropathy) to reveal the role of TG2 in renal fibrosis. Mechanisms behind TG2 activation, TG2 externalization dependent on Syndecan-4 and interactions between TG and profibrotic molecules including transforming growth factor ß and the angiotensin II receptor are discussed. Pharmacological TG2 inhibition shows antifibrotic effects in CKD. However, the translation of TG2 inhibition to treat CKD in patients is a challenge as clinical information is limited, and further studies on pharmacokinetics and efficacy of the individual compounds are required.


Protein Glutamine gamma Glutamyltransferase 2 , Renal Insufficiency, Chronic , Animals , Fibrosis/prevention & control , Humans , Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors , Protein Glutamine gamma Glutamyltransferase 2/drug effects , Protein Glutamine gamma Glutamyltransferase 2/metabolism , Renal Insufficiency, Chronic/drug therapy
...